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Abstract
A condition on the location of the centre of a mass (or probability) distribution
is found if its second moments are given. The result is applied to the relation
between the centre of mass and the inertia matrix of bodies. An example is
given to illustrate the importance of this condition.

PACS number: 45.40.−f

It is well known that for three given quantities to be the moments of inertia of a real mass
distribution with respect to three orthogonal axes intersecting at some point, they must satisfy
the triangle inequalities. When one of the triangle inequalities renders an equality, the mass
distribution must be planar and its centre of mass should lie in that plane. These facts are
mentioned in most textbooks on the mechanics of rigid bodies (see, e.g., [1, 2]). However, the
reader is usually left with the impression that the centre of mass of the distribution with given
moments of inertia can be chosen in an arbitrary way, which is in fact incorrect.

Let �(x1, . . . , xn) be a normed n-dimensional non-negative (continuous or discrete)
distribution function. Denote by xi (i = 1, . . . , n) the first moments of the distribution with
respect to the origin. We have the following:

Theorem 1. If the matrix of the second moments of the distribution with respect to the origin

S = (sij = xixj )
n
i,j=1 (1)

is given, then its centre (x1, . . . , xn) lies inside or on the ellipsoid∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2 · · · xn

x1 s11 s12 · · · s1n

x2 s12 s22 · · · s2n

...
...

...
...

xn s1n s2n · · · snn

∣∣∣∣∣∣∣∣∣∣∣
= 0 (2)

whose principal axes coincide with the eigenvectors of S and whose semi-axes are the square
roots of the eigenvalues of S.
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Proof. Consider the quadratic form

f (α0, α1, . . . , αn) = (α0 + α1x1 + . . . + αnxn)2

= α2
0 + 2α0

n∑
i=1

αixi +
n∑

i,j=1

αiαj sij

= αAά (3)

where α = (α0, α1, . . . , αn), ά its transpose and A is the matrix

A =




1 x1 x2 · · · xn

x1 s11 s12 · · · s1n

x2 s12 s22 · · · s2n

...
...

...
...

xn s1n s2n · · · snn


 . (4)

The quadratic form (3) is non-negative for all real {αi}, and hence A must have non-negative
principal minors [5]:

A

(
i1 · · · im

i1 · · · im

)
� 0 1 � i1 < · · · < im � n + 1 1 � m � n + 1. (5)

Turning the axes x1, . . . , xn to coincide with the principal axes ξ1, . . . , ξn of S, we replace
A by 



1 ξ1 ξ2 · · · ξn

ξ1 s11 0 · · · 0
ξ2 0 s22 · · · 0
...

...
...

. . .
...

ξn 0 0 · · · snn




(6)

and conditions (5) take the form

ξ2
i � 0, ξ2

i1
· · · ξ2

im

(
1 − ξi1

2

ξ2
i1

− · · · − ξim

2

ξ2
im

)
� 0. (7)

Now we have two cases:

1. If S is non-singular, then the set of conditions (7) has its intersection as
n∑

i=1

ξi
2

ξ2
i

� 1 (8)

meaning that the centre of the distribution must lie inside or on the ellipsoid with semi-

axes
{√

ξ2
i

}
which are directed along the ξ1, . . . , ξn axes. Returning to the axes {xi} the

equation of the ellipsoid takes the form stated in the theorem.
Condition (8) is not known in the literature. A fact well known for distributions and

widely used in textbooks on statistics and quantum mechanics is that for each variable

ξi
2 � ξ2

i , so that

ξi
2

ξ2
i

� 1 i = 1, . . . , n. (9)

This condition is much weaker than (8) and it signifies that the centre of the distribution lies

inside or on the cuboid with sides
{
2
√

ξ2
i

}
formed by tangent planes to the ellipsoid in (8)
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Table 1. ve/vc for some values of n.

n 1 2 3 4 5 10 20
ve/vc 1 0.7854 0.5236 0.3084 0.1645 0.0025 2.5 × 10−8

at the ends of its axes. As a measure for comparison, let us find the ratio of the volumes
ve, vc of admissible regions for the centre under conditions (8) and (9), respectively

ve

vc

=
πn/2

�(1+ n
2 )

∏n
i=1

√
ξ2
i

2n
∏n

i=1

√
ξ2
i

=
(√

π

2

)n

�
(
1 + n

2

) . (10)

This ratio is <1 for all n > 1 and decays quickly with growing n. Some values are given
in table 1.

2. If S is singular, then some of its eigenvalues are zeros, say ξ2
k+1 = · · · = ξ2

n = 0. The part
of the conditions (7) in which those quantities appear reduces to

−ξ2
k+1 � 0, . . . ,−ξ2

n � 0

and hence

ξk+1 = · · · = ξn = 0. (11)

The rest of the conditions (7) have the intersection
k∑

i=1

ξi
2

ξ2
i

� 1. (12)

The centre of the distribution in this case lies inside or on an ellipsoid in the k-dimensional
subspace ξk+1 = · · · = ξn = 0. �

Application to the centre of mass of a body with given inertia matrix

Let Oxyz be the Cartesian coordinate system coinciding with the principal axes of inertia of
a certain body of mass M and given principal moments of inertia A,B and C, respectively.
According to the above theorem, the centre of mass of the body lies inside or on the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1 (13)

where

a2 = B + C − A

2M
b2 = C + A − B

2M
c2 = A + B − C

2M
. (14)

Although one can expect such a result to be mentioned somewhere in classical textbooks
on the mechanics of rigid bodies such as [1, 2], this is not true. This result is new.

Note that if C → A + B then c → 0 and the centre of mass lies in the ellipse

x2

B/M
+

y2

A/M
= 1 (15)

of the plane z = 0.
Such considerations were utilized in our work [3] in the context of stability analysis

of certain periodic motions of a rigid body about a fixed point. In some works on applied
mechanics these conditions are usually overlooked, leading to unrealistic choices of parameters



6508 H M Yehia

of rigid bodies in numerical examples. An example is the work [4], where those parameters
were

A = 10 B = 20 C = 30 M = 300 x0 = 2 y0 = 5.

It is obvious, according to (15), that the values of x0, y0 compatible with the given mass and
moments must satisfy the condition x2

a2 + y2

b2 < 1, where a = 0.2582 and b = 0.1826. If one
insists on keeping the given values of x0, y0 and modifying only the mass M, a suitable choice
would satisfy M < 0.3704.
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